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PHYS 425: Electromagnetism |

1. Griffiths Problem 4.12 Hint: when the constant polarization vector is “taken out” of
the integral, what remains is the same integral as that needed in the “field of a sphere
with uniform charge density”.
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Recall for a sphere of uniform charge density and total charge Q, the electric field is
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2. Griffiths Problem 4.18

a) Inside both slabs D is pointing down and the magnitude is given by Gauss’s Law
as (ideal capacitor with no field leaking out the sides!)
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b) The electric field is
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c) The polarization is
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d) The potential difference between the plates is
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e) As D is uniform, there is no volume bound charge. There is surface bound charge
at three locations: on the upper plate the bound surface charge is—o, /2, on the

lower plate the surface bound charge is o, /3, and on the surface between the
two slabs the surface bound charge is o, /2—0, /3=0, /6.

f) Using all the charge, bound and free, to compute the electric field. Gauss’s Law
on the top and bottom plates gives
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3. Griffiths Problem 4.26

By Gauss’s Law




The electric field is
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4. Griffiths Problem 5.3

g) The condition of zero deflection is the same as no net Lorentz force. Thus if the
velocity is in the z-direction and the magnetic field in the y-direction,
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Such and arrangement of fields can act as a velocity filter for charged particles,

called a Wien filter.
h) From Equation 5.10 in Griffiths,
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assuming the same velocity went into the magnetic field as before.

5. Griffiths Problem 5.6

a) If the record rotates with angular frequency @, an individual point on the
phonograph record traces a circle of circumference 2zr . The time it takes to
make one revolution is 2z / @, and so the velocity is
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The surface current density isK = ov = car.

b) The volume charge density is
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and the velocity, as in a) above, is w\/X* + Yy’ = wrsin @ because /x* + y* is the

distance from the rotation axis. In vector form this result is@xr . So the
expression in polar coordinates is
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6. Griffiths Problem 5.25

Colin’s solution is the correct one. It’s just not obviously so! Note that he said that the
solution is
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Using cosé = \/(1+ sin@)(1-sin @) , this solution becomes (See also Gradshteyn and
Ryzhik Integral Tables Formula 2.562.9)
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Once it is in this form, it is easy to see the correct solution emerges. When taking the

derivatives in the curl expression for B
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Implicit differentiation yields
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Exactly, the 5.37 result! (Note: (xJ—yR)/s=¢)
It is possible to get the result using Colin’s original expression.

Differentiating Colin’s expression
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The rest of the derivation follows the above.

It turns out, as shown in Maggie Bragg’s solution, that an easy solution also comes from

the expression
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Indeed
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Final comment. To show the correct magnetic field results from the integral expression,
one can differentiate inside the integral and make a trigonometric substitution
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