
 Homework Problems IV 

PHYS 425: Electromagnetism I 
. 

 

1. Griffiths Problem 4.12   Hint: when the constant polarization vector is “taken out” of 

the integral, what remains is the same integral as that needed in the “field of a sphere 

with uniform charge density”. 
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     Recall for a sphere of uniform charge density and total charge Q, the electric field is 
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       Consequently 
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       So 
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2. Griffiths Problem 4.18 

 

a) Inside both slabs D is pointing down and the magnitude is given by Gauss’s Law 

as (ideal capacitor with no field leaking out the sides!) 
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b) The electric field is 
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c) The polarization is 
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d) The potential difference between the plates is 
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e) As D is uniform, there is no volume bound charge. There is surface bound charge 

at three locations: on the upper plate the bound surface charge is / 2f , on the 

lower plate the surface bound charge is / 3f , and on the surface between the 

two slabs the surface bound charge is / 2 / 3 / 6f f f    . 

 

f) Using all the charge, bound and free, to compute the electric field. Gauss’s Law 

on the top and bottom plates gives 
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 On the surface between the slabs, Gauss’s Law also gives, consistent with above 
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3. Griffiths Problem 4.26 

 

 By Gauss’s Law 
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 The electric field is 
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 The total energy is 
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4. Griffiths Problem 5.3 

 

g) The condition of zero deflection is the same as no net Lorentz force. Thus if the 

velocity is in the z-direction and the magnetic field in the y-direction, 
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Such and arrangement of fields can act as a velocity filter for charged particles, 

called a Wien filter. 

h) From Equation 5.10 in Griffiths, 
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 assuming the same velocity went into the magnetic field as before. 

 

5. Griffiths Problem 5.6 

 

a) If the record rotates with angular frequency , an individual point on the 

phonograph record traces a circle of circumference 2 r . The time it takes to 

make one revolution is 2 /  , and so the velocity is 
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 The surface current density is K v r   . 

 

b) The volume charge density is 
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and the velocity, as in a) above, is 
2 2 sinx y r    because 

2 2x y is the 

distance from the rotation axis. In vector form this result is r . So the 

expression in polar coordinates is  
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6. Griffiths Problem 5.25 

 

Colin’s solution is the correct one. It’s just not obviously so! Note that he said that the 

solution is 
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Using   cos 1 sin 1 sin     , this solution becomes (See also Gradshteyn and 

Ryzhik Integral Tables Formula 2.562.9) 
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Once it is in this form, it is easy to see the correct solution emerges. When taking the 

derivatives in the curl expression for B 

   

0 0

0

2

1 sin cos cos
ln

8 1 sin 8 1 sin 1 sin

cos 1 sin cos 1 sin
                                    

8 1 sin

                                    

I I

x x

I

x

    

    

    

 

          
               

       
  

  

0 1
 

4 cos

I

x

 

 

 
    

 

Implicit differentiation yields 
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So indeed 
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Exactly, the 5.37 result! (Note:   ˆˆ ˆ /xy yx s   ) 

It is possible to get the result using Colin’s original expression. 

 

Differentiating Colin’s expression 
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The rest of the derivation follows the above. 

 

It turns out, as shown in Maggie Bragg’s solution, that an easy solution also comes from 

the expression 
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Indeed 
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Final comment. To show the correct magnetic field results from the integral expression, 

one can differentiate inside the integral and make a trigonometric substitution 

 
 

 

 
  

 

   

2

1

2

1

2

1

2

1

0

22

0

22

0

3/2
22

3

0

2 3

0
2 12

ˆ
4

ˆ ˆ
4

ˆ ˆ
4

tan

cos
ˆ ˆ

4 cos

ˆ ˆ sin sin
4

z

z

z

z

z

z

I dz
z

s z z

I dz
x y

y x s z z

I dz
xy yx

s z z

z z s

I s d
yx xy

s

I
yx xy

s



















  

 


 






 

  
   

    


  

 

  

 

  









A r

A

 

 

 

 


